Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(7): e0255438, 2021.
Article in English | MEDLINE | ID: covidwho-1388951

ABSTRACT

Although traditional models of epidemic spreading focus on the number of infected, susceptible and recovered individuals, a lot of attention has been devoted to integrate epidemic models with population genetics. Here we develop an individual-based model for epidemic spreading on networks in which viruses are explicitly represented by finite chains of nucleotides that can mutate inside the host. Under the hypothesis of neutral evolution we compute analytically the average pairwise genetic distance between all infecting viruses over time. We also derive a mean-field version of this equation that can be added directly to compartmental models such as SIR or SEIR to estimate the genetic evolution. We compare our results with the inferred genetic evolution of SARS-CoV-2 at the beginning of the epidemic in China and found good agreement with the analytical solution of our model. Finally, using genetic distance as a proxy for different strains, we use numerical simulations to show that the lower the connectivity between communities, e.g., cities, the higher the probability of reinfection.


Subject(s)
COVID-19/epidemiology , Epidemics/prevention & control , Mutation/genetics , SARS-CoV-2/genetics , China/epidemiology , Disease Susceptibility/epidemiology , Evolution, Molecular , Humans , Models, Statistical , Probability
2.
Chaos Solitons Fractals ; 138: 109999, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-728470

ABSTRACT

The COVID-19 pandemic led several countries to resort to social distancing, the only known way to slow down the spread of the virus and keep the health system under control. Here we use an individual based model (IBM) to study how the duration, start date and intensity of quarantine affect the height and position of the peak of the infection curve. We show that stochastic effects, inherent to the model dynamics, lead to variable outcomes for the same set of parameters, making it crucial to compute the probability of each result. To simplify the analysis we divide the outcomes in only two categories, that we call best and worst scenarios. Although long and intense quarantine is the best way to end the epidemic, it is very hard to implement in practice. Here we show that relatively short and intense quarantine periods can also be very effective in flattening the infection curve and even killing the virus, but the likelihood of such outcomes are low. Long quarantines of relatively low intensity, on the other hand, can delay the infection peak and reduce its size considerably with more than 50% probability, being a more effective policy than complete lockdown for short periods.

SELECTION OF CITATIONS
SEARCH DETAIL